
A Demo of IoT Healthcare Application
Provisioning in Hybrid Cloud/Fog Environment

Ons Bibani‡§, Carla Mouradian†, Sami Yangui†, Roch H. Glitho†, Walid Gaaloul‡, Nejib Ben Hadj-Alouane§,
Monique J. Morrow ¶, Paul A. Polakos∗

†Concordia Institute for Information Systems Engineering. Concordia University, Montreal, QC, H3G 2W1, Canada
‡ SAMOVAR, Telecom SudParis, CNRS. Universite Paris-Saclay. 9, rue Charles Fourier. 91011 Evry Cedex, France

§UR OASIS, National Engineering School of Tunis. University of Tunis El Manar, Tunis, Tunisia
¶Cisco Systems, Zurich, Switzerland
∗Cisco Systems, New York, NY, USA

Abstract—Fog computing brings cloud closer to end-users
and data sources by enabling computation at the edge of the
network. Low latency is the main benefit. IoT applications are
often latency-sensitive. Such applications may be provisioned
as component-based in a hybrid cloud/fog environment with
components spanning cloud and fog. This will enable placing
some of its components in the fog domain closer to the IoT
devices, and consequently reduce the latency. However, provision-
ing applications in hybrid cloud/fog environment is still manual
today. Existing PaaS do not support interacting with fog nodes, at
the edge, for applications’ components provisioning. This demo
shows the key features of the hybrid Platform as-a-Service (PaaS)
we have designed for IoT applications provisioning in cloud and
fog environments. Three goals are assigned to the demo: (1) How
applications can be designed and developed in such environments,
(2) how the hybrid PaaS deploys the applications’ components
across cloud and fog nodes, and (3) how it executes and manages
them using appropriate orchestration techniques.

Index Terms—BPMN; Cloud computing; Fog computing; IoT

I. CONTEXT, MOTIVATIONS & SCOPE OF THE DEMO

Internet of Things (IoT) enables the connection of various

objects - such as Radio-Frequency IDentification (RFID) tags,

sensors, cellphones over the Internet [1]. These objects interact

with each other and cooperate with their neighbors through

unique addressing schemes seeking to reach a common goal.

This emerging infrastructure of objects could enable a plethora

of new applications. The provisioning of these applications

faces several challenges (e.g. efficiency in resource usage,

elasticity) that cloud computing might aid in meeting.
In cloud setting, the Platform as-a-Service (PaaS) operates

the virtualized physical resources provided by the Infrastruc-

ture as-a-Service (IaaS) in order to host and execute end-user

applications. These applications are offered as Software-as-

Service (SaaS) and may be located far from the end-users

and/or data sources. This may cause unacceptable delays

for latency-sensitive IoT applications such as firefighting and

healthcare. Fog computing has been introduced recently. It

extends the traditional cloud computing paradigm to the edges

of the network by enabling computation and storage closer to

the end-users and/or data sources when appropriate, to avoid

excessive delays [2]. The edge of the network refers to the

domain involving hosting nodes (e.g. cellphones, laptops) that

are connected to the system within a distinct geographic area

(e.g. local area network). With fog computing, applications’

components could be either hosted and executed in the cloud

PaaS or in the fog.

However, despite the fact that most of the existing PaaS

solutions (e.g. Cloud Foundry, Microsoft Azure) enable provi-

sioning IoT applications nowadays, all of them do not support

provisioning these applications with components spanning

cloud and fog. This is due to the absence of control, signaling,

and data interfaces required to bind the cloud domain to the

fog domains that could be part of such a hybrid environment.

Furthermore, they do not support managing applications (e.g.

executing, migrating, monitoring) with components distributed

across PaaS and fog. Classical PaaSs are not able to achieve

proper execution of the applications’ flow with components

belonging to an external domain than the main PaaS. In

addition to that, monitoring and migrating applications com-

ponents from cloud to fog (and vice versa) and/or from fog

to another fog is very common in such hybrid environments

for optimization purposes (e.g. [3], [4]). This complicates

more handling the execution flow during the runtime since the

applications’ components locations may constantly change. It

should be noted that all these operations are still performed

manually in hybrid cloud/fog environments nowadays.

As part of our work, we designed a novel PaaS that enables

provisioning IoT applications in hybrid cloud/fog environ-

ments. A high-level architecture of this PaaS was introduced

in [5]. This demo shows the prototype that implements that

PaaS architecture. It covers the whole applications’ lifecycle.

The prototype supports: (1) Developing and composing IoT

application components, (2) deploying them, and (3) managing

them including executing them by orchestrating the execution

flow across the several involved components. Unlike classical

PaaS, our prototype enables placing the applications’ com-

ponents in either cloud or fog when deploying them and is

able to continue executing the whole applications during/after

migration procedures. The prototype was validated using a

set of realistic and latency-sensitive IoT applications such as

fire detection and fighting and robotic prescription dispensing
and medication delivery applications. The former is detailed9781-5090-1445-3/16$31.00 c© 2016 IEEE (CloudCom’16)

2016 IEEE 8th International Conference on Cloud Computing Technology and Science

2330-2186/16 $31.00 © 2016 IEEE

DOI 10.1109/CloudCom.2016.79

472

@Computer_IT_Engineering

Fig. 1. Robotic prescription dispensing and medication delivery system

in [6] while the latter is used for this demo. The next section

introduces the robotic prescription dispensing and medication
delivery use case and discusses the prototype architecture. Sec-

tion III is devoted to the demonstration overview. Section IV

concludes the paper.

II. IOT HEALTHCARE USE CASE DESCRIPTION &

PROTOTYPE ARCHITECTURE

In this Section, we first introduce the IoT healthcare appli-

cation use case that we use for the demo. Then, we discuss the

architecture of the prototype that we implemented to provision

such application in the hybrid cloud/fog environment.

A. Robotic Prescription Dispensing and Medication Delivery
System

The use case we consider for the demo is depicted in Fig. 1.

It implements an IoT healthcare application that consists of

three subsystems:

• Medical Data Collecting Subsystem: for collecting and

processing of the vital data related to a given patient. It

is also responsible for formatting, analyzing, and storing

these data.

• Automatic Medication Prescription Subsystem: for au-

tomatic medication selection based on patients’ symp-

toms. This subsystem may interact with the Medical
Data Collecting Subsystem in order to get the patients’

medical record during the medications selection process.

It generates a personalized notice for the patients.

• Robotic Medication Delivery Subsystem: for automatic

medication delivery and payment based on the notice

generated by the Automatic Medication Prescription Sub-
system.

The detailed components, as well as, the execution flow of

each subsystem are detailed in what follows:

1) Medical Data Collecting Subsystem: This system en-

ables continuous monitoring and the processing of the vital

data (e.g. blood pressure, heart rate, glucose level) related to

a given patient. It handles vital information collected by a

Body Area Network (BAN) deployed on the patient’s body

and routes it to the processing components. The routing is

performed through connected close devices such as the pa-

tient’s cellphone (Fig. 1, action A). The patient equipped with

the BAN can perform his mobile, daily activities such as going

to work and shopping. The monitored data is sent to the Data
Analyzer & Notifier component (action B). This component

parses the received data in order to detect a prospective heart

attack. When the risk of heart attack is high, it immediately

warns emergency services (e.g. calling 911) and/or a list of

pre-stored contacts (e.g. family members) to warn them about

the imminent heart attack. Simultaneously, the vital data is

sent to the Data Formatter & Aggergator (action C). This

component formats and adapts the received data according to

a specific scheme (e.g. SQL, RDF format) for storage and

indexation purposes. It may also encrypt the data for security

and/or privacy purposes. The formatted data is routed to the

Medical Information Recorder (action D). The latter stores

the data for dynamic clinical assistance (action E). This data

can be accessed by qualified professionals (e.g. the attending

physician can carry out a remote diagnosis and update some

instructions such as changing medication).

2) Automatic Medication Prescription Subsystem: This sys-

tem enables selecting appropriate medications in automatic

way by simply interacting with the patient. The patient starts

by providing the system with his health insurance card and the

list of his symptoms (Fig. 1, action 1). The system connects to

the Profile Loader (action 2.1) which gets the patient’s profile

information (e.g. diabetes or not, surgical history, allergies

to specific substances) from the health insurance database.

This database belongs to the insurance company to which

the patient is affiliated. These information are forwarded to

the Medication Selector component (action 3). On the other

hand, the provided list of symptoms is sent to the Symptoms
Analyzer (action 2.2). This component implements an artificial

intelligence search algorithm that aims at identifying the

patient’s disease. Specifically, it interacts with the patient when

473

@Computer_IT_Engineering

generating on the fly a set of questions based on the previous

answers provided by the patient. Several iterations may be

required in order to identify the disease. A connection to a

key/value database that maps between the existing symptoms

and the possible diseases is performed during this process.

Once the disease is identified, the Symptoms Analyzer forwards

it to the Medications Selector (action 4). This component pro-

cesses a matchmaking between the identified disease and the

medications information stored in the medications database.

During this procedure, the Medications Selector may refine

the list of the discovered medications using the information

related to the patient profile (e.g. eliminating the medications

that contain a substance to which the patient is allergic). It

may also use his recent medical records (action 5) during

the medication refinement process (i.e. to consider his recent

glucose level when it comes to specific treatments such as

water depletion). After that, the obtained list of medications

is communicated to the Dosage Setter (action 6) in order to

set the appropriate dosage for each one. A new connection

to the patient medical records may be required (action 7) in

order to get necessary information for optimal dosage such as

the age of the patient and/or his weight. The medications list,

as well as, the corresponding dosage, are sent to the Notice
Generator (action 8). This component generates a personalized

medications notice for the patient and sends it back to his

cellphone (action 9).

3) Robotic Medication Delivery Subsystem: This system

enables automatic medication delivery and payment. The pa-

tient provides this system with his health card and medications

notice in order to get the prescribed medications. Information

related to his health insurance profile (e.g. refund rate) are

loaded from the health insurance database through the Profile
Loader component (Fig. 1, action I) and forwarded to the

Billing System component (action II). Simultaneously, the

notice is sent to the Medication Locator component (action

III). This component parses the notice and determines the

location of each medication in the pharmacy (i.e. corridor,

shelf, position). The list of the locations is then sent to the

Robot Dispatcher component (action IV). The latter sends

control actions to a delivery robot in order to collect the

medications and give them to the patient.

B. Prototype Architecture

The implemented prototype for the demo is depicted in

Fig. 2. It consists of three domains:

• The IoT domain that includes the BAN used for monitor-

ing the patient’s vital data. We use SHIMMER Platinum

Development Kit as BAN. Shimmer is a lightweight body

wearable wireless sensor platform designed for health-

sensing applications. It allows capturing and communi-

cating sensed data. We also use HTC 816 desire with

Android V6.0 OS as cellphone to collect the data from

the BAN, one STW chip card reader/writer to scan the

information from the healhtcare insurance chip card and

one LEGO EV3 Mindstorms robot as delivery device.

Fig. 2. The developed prototype architecture

• The Fog and Gateways domain is located close to the

IoT domain and accessible via short range radio (i.e.

Bluetooth). It is made up of the IoT gateway required

for protocol and information model conversion [7] and

of the fog execution environment required for hosting the

applications’ components located in the fog.

• The Cloud domain is further away and accessible via a

wide area network. It includes the PaaS and the IaaS

needed to execute the components located in the cloud.

It should be noted that the fog execution environment and

the PaaS are based on an extended Cloud Foundry that enables

the integration of the fog. Indeed, we extended MicroPCF, a

lightweight distribution of Cloud Foundry, by adding novel

components to support provisioning applications in the hybrid

cloud/fog system. Examples of these components are Docker

containers that host and execute applications’ components,

migration module to handle moving components from cloud

to fog and vice versa. The detailed software architecture of

the performed extension is presented in [5].

III. DEMO OVERVIEW

This section describes the key features of our proposed

demo. The demo uses the developed prototype and shows

the whole provisioning process of the introduced healthcare

use case in hybrid cloud/fog environment. The demo con-

sists of three steps. Each step implements one phase of

the application’s lifecycle (i.e. development, deployment and

management). Broadly speaking, our demo will show how

one can (i) develop the IoT healthcare application in such

environment, (ii) deploy it across cloud and fog according to a

well-defined placement plan and (iii) execute it. Further details

for each one of these steps are provided in what follows.

A. Development Step

For the development phase, we use the Eclipse IDE for

code editing and application’s components development. After

that, each application’s component is packaged in a Docker

container with its specific requirements (e.g. scripts, libraries).

In addition to the components source code, the developer has

to provide a business process that describes the interactions

between the components and the execution chain (the flow) of

the whole application. We use Business Process Model and

474

@Computer_IT_Engineering

Fig. 3. The BPMN orchestration workflow of the robotic prescription dispensing and medication delivery system

Fig. 4. A screenshot of the extended Apache Activiti modeler interface

Notation (BPMN) to model such business process. BPMN

is a standard for business processes modeling that provides

a graphical notation for specifying business processes. As

example, Fig. 3 depicts the BPMN process describing the

Automatic Medication Prescription Subsystem of our IoT

healthcare application. We use Apache Activiti modeler to

draw the process. The activities of the process are the basis

of the corresponding application orchestration workflow. They

are designed as REST HTTP Web services. The multi-choice

processes are handled through gateways. A gateway is an

operator that evaluates the state of the business process and

redirects the flow to the appropriate path based on its defined

condition (e.g. exclusive gateway, parallel gateway). Back

to the IoT healthcare application BPMN process, the Load
Patient Profile and Analyze symptoms activities are processed

in parallel after the Enter Symptoms activity. Finally, at the

end of this step, the developer specifies explicitly the location

of each application component (either in cloud or fog). To

that end, we extended the Apache Activiti modeler in order to

integrate a new “placement” operator and its related attributes

(i.e. “cloud”, “fog”). The extended elements, as well as, the

placement decisions for the Medical Data Collecting Subsys-
tem, are highlighted in Fig. 4. One placement possibility for

this subsystem components consists on placing the latency-

sensitive components (e.g. Send Health Alert Notification)

in the fog close to the cellphone and the compute-intensive

components (e.g. Format & Aggregate Vital Data) in the cloud.

B. Deployment Step

For the deployment phase, we use the Cloud Foundry

Eclipse plugin to push the Docker containers within the appli-

cation’s components over the target MicroPCF instance. The

Docker containers are then deployed over MicroPCF instances

either in cloud or fog based on the developer placement

decision for each component. For the demo, the MicroPCF

instance part of the cloud domain (i.e. C-MicroPCF) will be

deployed in the TSE Concordia lab in Montreal and accessible

through the Internet while the IoT and fog & gateways

domains, including the MicroPCF instance deployed in fog

(i.e. F-MicroPCF), will be located locally in the demo room.

C. Management Step

For the management phase, we use Apache Activiti server as

orchestration engine to execute the BPMN process associated

to the application. We also use a migration engine that interacts

with the Docker registry management framework and allows

moving application’s components within the Docker nodes

from cloud to fog and vice versa.

IV. CONCLUSION

This demo aims at showing our performed prototype that

implements provisioning of IoT healthcare application in hy-

brid cloud/fog environment. Its ultimate goal is to demonstrate

the support of the whole application lifecycle.

ACKNOWLEDGMENT

This work is partially supported by CISCO systems through

grant CG-589630.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] L. M. Vaquero and L. Rodero-Merino, “Finding Your Way in the Fog:
Towards a Comprehensive Definition of Fog Computing,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32, Oct. 2014.

[3] S. Agarwal, S. Yadav, and A. K. Yadav, “An Efficient Architecture and
Algorithm for Resource P rovisioning in Fog Computing,” I.J. Information
Engineering and Electronic Business, vol. 1, pp. 48–61, 2016.

[4] R. Deng, R. Lu, C. Lai, and T. H. Luan, “Towards power consumption-
delay tradeoff by workload allocation in cloud-fog computing,” in 2015
IEEE International Conference on Communications (ICC), 2015, pp.
3909–3914.

[5] S. Yangui, P. Ravindran, O. Bibani, R. H. Glitho, N. B. Hadj-Alouane,
M. J. Morrow, and P. A. Polakos, “A platform as-a-service for hybrid
cloud/fog environments,” in IEEE International Symposium on Local and
Metropolitan Area Networks, LANMAN 2016, Rome, Italy, 2016, pp. 1–7.

[6] O. Bibani, S. Yangui, R. H. Glitho, W. Gaaloul, N. B. Hadj-Alouane, M. J.
Morrow, and P. A. Polakos, “A demo of a PaaS for IoT applications
provisioning in hybrid cloud/fog environment,” in IEEE International
Symposium on Local and Metropolitan Area Networks, LANMAN 2016,
Rome, Italy, 2016, pp. 1–2.

[7] C. Mouradian, T. Saha, J. Sahoo, M. Abu-Lebdeh, R. H. Glitho, M. Mor-
row, and P. A. Polakos, “Network functions virtualization architecture for
gateways for virtualized wireless sensor and actuator networks,” IEEE
Network, vol. 30, no. 3, pp. 72–80, 2016.

475

@Computer_IT_Engineering

