
H
c

D
a

b

a

A
R
R
2
A
A

K
L
C
P
H
P

1

a
t
C
c
i
e
m
p
t
d
s
f

t
r
o
p
s
T
t

p

1
h

Applied Soft Computing 13 (2013) 2292–2303

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho me p age: www.elsev ier .com/ l ocate /asoc

oney bee behavior inspired load balancing of tasks in cloud
omputing environments

hinesh Babu L.D.a,∗, P. Venkata Krishnab

School of Information Technology and Engineering, VIT University, Vellore, India
School of Computing Science and Engineering, VIT University, Vellore, India

 r t i c l e i n f o

rticle history:
eceived 30 August 2012
eceived in revised form
8 December 2012
ccepted 30 January 2013
vailable online 14 February 2013

a b s t r a c t

Scheduling of tasks in cloud computing is an NP-hard optimization problem. Load balancing of non-
preemptive independent tasks on virtual machines (VMs) is an important aspect of task scheduling
in clouds. Whenever certain VMs are overloaded and remaining VMs are under loaded with tasks for
processing, the load has to be balanced to achieve optimal machine utilization. In this paper, we propose
an algorithm named honey bee behavior inspired load balancing (HBB-LB), which aims to achieve well

eywords:
oad balancing
loud computing
riorities of tasks

balanced load across virtual machines for maximizing the throughput. The proposed algorithm also bal-
ances the priorities of tasks on the machines in such a way that the amount of waiting time of the tasks
in the queue is minimal. We have compared the proposed algorithm with existing load balancing and
scheduling algorithms. The experimental results show that the algorithm is effective when compared
with existing algorithms. Our approach illustrates that there is a significant improvement in average

tion
oney bee behavior
erformance evaluation

execution time and reduc

. Introduction

Cloud computing is an entirely internet-based approach where
ll the applications and files are hosted on a cloud which consists of
housands of computers interlinked together in a complex manner.
loud computing incorporates concepts of parallel and distributed
omputing to provide shared resources; hardware, software and
nformation to computers or other devices on demand. These are
merging distributed systems which follows a “pay as you use”
odel. The customer need not buy the software or computation

latforms. With internet facility, the customer can use the compu-
ation power or software resources by paying money only for the
uration he/she has used the resource. This forces the conventional
oftware licensing policies to change and avoids spending of money
or the facilities the customer does not use in a software package.

The customer is interested in reducing the overall execution
ime of tasks on the machines. The processing units in cloud envi-
onments are called as virtual machines (VMs). In business point
f view, the virtual machines should execute the tasks as early as
ossible and these VMs run in parallel. This leads to problems in

cheduling of the customer tasks within the available resources.
he scheduler should do the scheduling process efficiently in order
o utilize the available resources fully. More than one task is

∗ Corresponding author. Tel.: +91 0416 2243091.
E-mail addresses: lddhineshbabu@vit.ac.in (Dhinesh Babu L.D.),

venkatakrishna@vit.ac.in (P. Venkata Krishna).

568-4946/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2013.01.025
in waiting time of tasks on queue.
© 2013 Elsevier B.V. All rights reserved.

assigned to one or more VMs that run the tasks simultaneously.
This kind of environments should make sure that the loads are well
balanced in all VMs i.e., it should make sure that the tasks are not
loaded heavily on one VM and some VMs do not remains idle and/or
under loaded. In this case, it is the responsibility for the scheduler
to balance the loads across the machines. A load balancing algo-
rithm attempts to improve the response time of user’s submitted
applications by ensuring maximal utilization of available resources.

The main objective of load balancing methods is to speed up
the execution of applications on resources whose workload varies
at run time in unpredictable way [10]. Load balancing techniques
are widely discussed in homogeneous as well as heterogeneous
environments such as grids. There are basically two kinds of load
balancing techniques. They are (i) Static and (ii) dynamic.

Static algorithms work properly only when nodes have a low
variation in the load. Therefore, these algorithms are not suitable
for cloud environments where load will be varying at varying times.
Dynamic load balancing algorithms are advantageous over static
algorithms. But to gain this advantage, we need to consider the
additional cost associated with collection and maintenance of the
load information.

Dynamic techniques are highly successful for load balancing
of tasks among heterogeneous resources. Our proposed load bal-
ancing technique is also a dynamic technique which will not only

balance the load but also take into account the priorities of tasks in
the waiting queues of VMs.

In cloud computing environments, whenever a VM is heavily
loaded with multiple tasks, these tasks have to be removed and

dx.doi.org/10.1016/j.asoc.2013.01.025
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.asoc.2013.01.025&domain=pdf
mailto:lddhineshbabu@vit.ac.in
mailto:pvenkatakrishna@vit.ac.in
dx.doi.org/10.1016/j.asoc.2013.01.025

Applie

s
c
a
t
a
o
l

c
T
t
a
u
u
o
a
t
T
v
m
o

a
l
a
b
o
m
n
e
o
l
a
b
a
a
s
t
t
t
t
t
r
a
t
d
a
v
fl
b

•

•

•

•

•

Dhinesh Babu L.D., P. Venkata Krishna /

ubmitted to the under loaded VMs of the same data center. In this
ase, when we remove more than one task from a heavy loaded VM
nd if there is more than one VM available to process these tasks,
he tasks have to be submitted to the VM such that there will be

 good mix of priorities i.e., no task should wait for a long time in
rder to get processed. Load balancing is done at virtual machine
evel i.e., at intra-data center level.

Our approach suggests that load balancing in cloud computing
an be achieved by modeling the foraging behavior of honey bees.
his algorithm is derived from a detailed analysis of the behavior
hat honey bees adopt to find and reap food. In bee hives, there is

 class of bees called the scout bees which forage for food sources,
pon finding one, they come back to the beehive to advertise this
sing a dance called waggle/tremble/vibration dance. The display
f this dance, gives the idea of the quality and/or quantity of food
nd also its distance from the beehive. Forager bees then follow
he Scout Bees to the location of food and then begin to reap it.
hey then return to the beehive and do a waggle or tremble or
ibration dance to other bees in the hive giving an idea of how
uch food is left and hence resulting in either more exploitation

r abandonment of the food source.
In the same manner, the removed tasks from over loaded VMs

re considered as the honey bees. Upon submission to the under
oaded VM, the task will update the number of various priority tasks
nd load of that particular VM to all other waiting tasks. This will
e helpful for other tasks in choosing their virtual machine based
n load and priorities. Whenever a high priority task has to be sub-
itted to other VMs, it should consider the VM that has minimum

umber of high priority tasks so that the particular task will be
xecuted at the earliest. Since all VMs will be sorted in ascending
rder based on load, the task removed will be submitted to under
oaded VM. In essence, the tasks are the honey bees and the VMs
re the food sources. Loading of a task to a VM is similar to a honey
ee foraging a food source (a flower or a patch of flowers). When

 VM is overloaded i.e., similar to the honey getting depleted at
 food source, the task will be scheduled to an under loaded VM
imilar to a foraging bee finding a new food source. This removed
ask updates the remaining tasks about the VM status similar to
he waggle/tremble/vibration dance performed by the honey bees
o inform other honey bees in the bee hive. This task will update
he status of the VM i.e., how many tasks are being processed by
he VM and about the number and details of high priority tasks cur-
ently processed by the VM in a manner similar to the bees finding
n abundant food source updating the other bees in the bee hive
hrough its waggle dance. This updating will give a clear idea in
eciding which task should be assigned to which VM based on the
vailability and load of the VMs similar to which honey bees should
isit which food source based on whether honey is available at a
ower patch or not. The proposed algorithm works well for load
alancing of tasks in cloud computing environments.

The specific contributions of this paper include

An algorithm for scheduling and load balancing of non-
preemptive independent tasks in cloud computing environments
inspired by honey bee behavior
A literature survey about various existing load balancing algo-
rithms and the merits/demerits of these techniques
Correlation of the proposed HBB-LB algorithm with actual forag-
ing behavior of honey bees using a clear flow diagram showing
the behavioral control structures of honey bees and HBB-LB.
An analysis and systematic study with mathematical evidence to

show how the honey bee behavior inspired load balancing can
work for cloud computing environments
Performance analysis of the proposed algorithm and an evalua-
tion of the algorithm with respect to other existing algorithms.
d Soft Computing 13 (2013) 2292–2303 2293

Rest of this paper is organized as follows: Section 2 discusses
about the related works on existing load balancing techniques. Sec-
tion 3 describes the foraging behavior of honey bees and how it
relates to the proposed technique. Section 4 focuses on our pro-
posed approach with detailed algorithm and Section 5 presents
the experimental results along with performance evaluation of
the algorithm in comparison with existing algorithms. Finally
we conclude this paper highlighting the contributions and future
enhancements in Section 6.

2. Related works

Load balancing is removing tasks from over loaded VMs and
assigning them to under loaded VMs. Load balancing can affect
the overall performance of a system executing an application. Load
balancing algorithms can be classified in two different ways [2]:

Static load balancing algorithms: The decisions related to balancing
of load will be made at compile time when resource requirements
are estimated. The advantage of this algorithm is the simplicity
with respect to both implementation and overhead, since there is
no need to constantly monitor the nodes for performance statis-
tics. Static algorithms work properly only when there is a low
variation in the load for the VMs. Therefore, these algorithms are
not well suited for grid and cloud computing environments where
the load will be varying at various points of time.
Dynamic load balancing algorithms: Dynamic load balancing algo-
rithms make changes to the distribution of work load among nodes
at run-time; they use current load information when making dis-
tribution decisions [16].

Houle et al. [9] consider algorithms for static load balancing on
trees treating that the total load is a fixed one. In [6], Hu et al.
propose an optimal data migration algorithm in diffusive dynamic
load balancing through the calculation of Lagrange multiplier of
the Euclidean form of transferred weight. This work can effectively
minimize the data movement in homogenous environments, but it
does not consider heterogeneous environments. Genaud et al. [12]
enhanced the MPI Scatterv primitive to support master-slave load
balancing by taking into consideration the optimization of compu-
tation and data distribution using a linear programming algorithm.
However, this solution is limited to static load balancing.

In [7], a New Time Optimizing Probabilistic Load Balancing Algo-
rithm in Grid Computing is presented. This algorithm chooses the
resources based on better past status and least completion time.
The main purpose of this algorithm is to establish load balancing
and reduce the response time. In [1], a Task Load Balancing Strategy
for Grid Computing is presented. In this paper, a hierarchical load
balancing strategy and associated algorithms based on neighbor-
hood property is discussed. This strategy privileges local balancing
in first (load balance within sites without communication between
sites). Then, upper hierarchical balancing will take place and so
on. The main benefit of this idea is the decrease in the amount of
messages exchanged between Grid resources. This system creates
a hierarchical architecture that is totally independent of Grid archi-
tecture. In [5], titled “Dynamic Load Balancing in Grid Computing”,
like the previous paper, this paper presents a task load balancing
model in Grid environment. It also details the system in a man-
ner similar to the previous reference. The main characteristics of
this strategy are: (i) It uses task-level load balancing; (ii) It priv-
ileges local tasks transfer to reduce communication costs; (iii) It

is a distributed strategy with local decision making. This system
transforms the Grid to tree structure independent of Grid topo-
logical structure complexity. The system will use this tree for load
balancing.

2 Applie

A
t
c
s
a
r
a
o
i
o
i

i
b
l
r
a
r
o
c
t
E
o
t

p
p
b
e
t
m
t

m

•

•

•

•

•

L
d
d
l

E
n
q
i
a
i
c
t
m
l
r
p
f
f
i

294 Dhinesh Babu L.D., P. Venkata Krishna /

In [8], A Comparative Study into Distributed Load Balancing
lgorithms for Cloud Computing is presented. This paper considers

hree potentially viable methods for load balancing in large scale
loud systems. Firstly, a nature-inspired algorithm may be used for
elf-organization, achieving global load balancing via local server
ctions. Secondly, self-organization can be engineered based on
andom sampling of the system domain, giving a balanced load
cross all system nodes. Thirdly, the system can be restructured to
ptimize job assignment at the servers. Recently numerous nature-
nspired networking and computing models have received a lot
f research attention in seeking distributed methods to address
ncreasing scale and complexity in such systems.

The honey-bee foraging solution in [3], is investigated as a direct
mplementation of a natural phenomenon. Then, a distributed,
iased random sampling method that maintains individual node

oading near a global mean measure is examined. Finally, an algo-
ithm for connecting simile services by local rewiring is assessed
s a means of improving load balancing by active system restructu-
ing. In case of load balancing, as the web servers demand increases
r decreases, the services are assigned dynamically to regulate the
hanging demands of the user. The servers are grouped under vir-
ual servers (VS), each VS having its own virtual service queues.
ach server processing a request from its queue calculates a profit
r reward, which is analogous to the quality that the bees show in
heir waggle dance.

In [4], Dynamic Load Balancing Strategy for Grid Computing is
resented addressing the problem of load balancing in Grid com-
uting. As in [1,5] this paper also proposes a load balancing model
ased on a tree representation of a Grid. This load balancing strat-
gy has two main objectives: (i) Reduction of the mean response
ime of tasks submitted to a Grid; and, (ii) Reduction of the com-

unication costs during task transferring. This strategy deals with
hree layers of algorithms (intra-site, intra-cluster and intra-grid).

Load balancing algorithms can be defined based on the imple-
entation of the following policies [11]:

Information policy: specifies what workload information to be
collected, when it is to be collected and from where.
Triggering policy: determines the appropriate period to start a load
balancing operation.
Resource type policy: classifies a resource as server or receiver of
tasks according to its availability status.
Location policy: uses the results of the resource type policy to find
a suitable partner for a server or receiver.
Selection policy: defines the tasks that should be migrated from
overloaded resources (source) to most idle resources (receiver).

oad Balancing can also be classified into more categories based on
ifferent behaviors of load balancing algorithms [5]: Centralized vs.
istributed load balancing and application-level vs. system-level

oad balancing
In [13], A Routing Load Balancing Policy for Grid Computing

nvironments is presented. It uses routing concepts from computer
etworks to define a neighborhood and search the most ade-
uate computers to divide applications’ workload. This algorithm

s designed to equally distribute the workload of tasks of parallel
pplications over Grid computing environments. Route algorithm is
ndicated for environments where there are several heterogeneous
omputers and parallel applications are composed of multiple
asks. When dealing with large scale systems, an absolute mini-

ization of the total execution time is not the only objective of a
oad balancing strategy. The communication cost, induced by load
edistribution, is also a critical issue. For this purpose, Yagoubi

roposes in [14], a hierarchical load balancing model as a new
ramework to balance computing load in a Grid. This model suffers
rom bottlenecks. In [23], a Mathematical model of cloud comput-
ng framework using fuzzy bee colony optimization technique is
d Soft Computing 13 (2013) 2292–2303

presented. Honey Bee colony algorithm is used for web services in
web servers that are scattered.

3. Honey bee foraging behavior

The artificial bee colony algorithm (ABC), an optimization algo-
rithm based on the intelligent foraging behavior of honey bee
swarm was proposed by Karaboga in 2005 [26,38]. This new
Meta heuristic is inspired by the intelligent foraging behavior of
honey bee swarm. The algorithm presented in the work is for
numerical function optimization. The advantage of ABC is that the
global search ability in the algorithm is implemented by introduc-
ing neighborhood source production mechanism [27]. Rao et al.
[27] deals with radial distribution system network reconfiguration
problem. This paper presents a method for determining the sec-
tionalizing switch to be operated in order to solve the distribution
system loss minimization problem. ABC algorithm were used in
many fields such as digital signal processing [28], leaf-constrained
minimum spanning tree problem [29], flow shop scheduling prob-
lem [30], block matching algorithm for motion estimation [39],
optimization [42] and inverse analysis problems [31]. Tsai et al.
present an interactive artificial bee colony supported passive con-
tinuous authentication system [41].

In [32], a new population-based search algorithm called the Bees
Algorithm (BA) is presented. The algorithm mimics the food for-
aging behavior of swarms of honey bees. In its basic version, the
algorithm performs a kind of neighborhood search combined with
random search and can be used for both combinatorial optimiza-
tion and functional optimization. Honey bees have developed the
ability to collectively choose between nectar sources by selecting
the optimal one: This source provides a maximum ratio of gain
compared to costs [34]. The whole decentralized decision process
is based on competition among dancing bees, which guide new
(naive) bees to their foraging targets. In [37], authors have proposed
Load balancing using bees algorithm.

Honey bee behavior is also used in web services. In [19], “On
Honey Bees and Dynamic Server Allocation in Internet Hosting Cen-
ters”, authors propose a new honey bee allocation algorithm based
on self-organized behavior of foragers in honey bee colonies. Host-
ing centers then must allocate servers among clients to maximize
revenue. The allocation of servers to collect revenue in Internet
hosting centers parallels the allocation of foragers to collect nectar
in honey bee colonies. A hosting center with a certain number of
servers hosting multiple Internet clients is analogous to a honey
bee colony with a certain number of bees foraging at multiple sites
in the surrounding countryside.

A model of self-organization that takes place within a colony of
honey bees has been presented in [33]. This Insect foraging tech-
nique is used in the field of robotics. The main principles of social
insect foraging behavior can find an application in a swarm of inex-
pensive insect-like robots [35,36].

According to Johnson and Nieh, Honey Bees are social insects
where collective decisions are made via feedback cycles based on
positive and negative signaling [24]. Fig. 1 shows a simplified flow
diagram of behavioral control structure for foraging honey bees
as presented by Brian R. Johnson & James C. Nieh. This behav-
ioral model is a powerful and tested model describing the foraging
behavior of honey bees. This model is based on the behavioral
structure of forager bee developed by Han de Vries & Jacobus C.
Biesmeijer [25]. An important means for communication among
honey bees is through waggle dance, a dance which will give an
idea to the waiting bees in the nest about a potential food source, its

distance from the bee hive etc. In addition, honey bees use tremble
and vibration dances also.

Our proposed Honey Bee Behavior inspired Load Balancing is
based on the above Brian R. Johnson and James C. Nieh behavioral

Dhinesh Babu L.D., P. Venkata Krishna / Applied Soft Computing 13 (2013) 2292–2303 2295

switch?

Experience?

Recon?

Delay Scout?

Dance

perceived ?

Dance info

confirming?

Fight?

DelayLose?

Stop Si gnal

Successful?

Dance perceived?

Scout?

OUT

Scout

Store Loss

Win?

Feed

Store site

Store value

Store time

Return to

nectar source?

Return to

nectar source?

Store new

position

FLY

Sound Found

BEE IN

Load?

Find r

Unload Vibration

Tremble

Waggle

F
a

m
r
s
s
m
s
B
r
h

l
i
V
V
t
p
s
l
a
t

t
i
v
f
i
a
w
t
i

4
a

a

Find Suitable

VMs by Load

VM set Found
Return to VM

set

Info

confirming?

Successful?

Delay

Experience?

Info perceived?

Scout? Recon?

Scout?

Info

perceived?

Return to VM

set

switch?

Store new

Info

FLY

Dance Vibration

Tremble

Waggle

DelayLose? OUT

Scout

Store Loss

Win?

Fight for the

VM based on

QoS

Feed

• Store VM
load

• Store Task

priorities

• Store VM

groups

TASK IN

Load?

Inform next

Task about

VMs

Allocate task

to the

respective

VM

ig. 1. Flow diagram of the behavioral control structure for foraging honey bees
dapted from Johnson and Nieh [25] with minor changes.

odel of honey bees. In Fig. 1, arrows with a black filled start circle
epresent positive signals and arrows with hollow circle repre-
ent negative signals. Both situations, positive and negative require
ome sort of communication among honey bee swarms. We have
apped the above flow diagram showing the behavioral control

tructure for foraging honey bees into the proposed Honey Bee
ehavior inspired Load Balancing algorithm. The proposed algo-
ithm is completely inspired by the natural foraging behavior of
oney bees and is illustrated in Fig. 2.

A task removed from overloaded VM has to find suitable under
oaded VMs it can be allocated to. It has two possibilities i.e., either
t finds the VM set (Positive signal) or it may not find the suitable
M (negative signal). There could be more than one VM (a set of
Ms for allocation) which can accept this task. Now the task has

o find best among these VMs based on the QoS criteria called task
riority i.e., task finds the VM which has a less number of tasks with
ame kind of priority (high priority tasks finds the VM which has
ess number of high priority tasks). We call it as fight for the VM
mong tasks. When this fight is over, the winning task is allocated
o the respective VM found and the details are updated.

If a task does not find a suitable VM, it goes for delay in alloca-
ion, during which it gets experience and it will start listening the
nformation updates by other tasks (similar to honey bees listening
arious dances). Once it confirms the information, the process starts
rom finding the VM sets and after successful VM set identification,
t will fight with other competing tasks to find it’s most suitable VM
nd gets allocated to it. Information is updated once it ends its fight
ith other tasks (whether it loses or wins). As newer tasks arrive,

he cycle starts until all tasks are allocated to VMs and the schedul-
ng system is well balanced based on load as well as priorities.

. Honey bee behavior inspired load balancing (HBB-LB)

lgorithm

Cloud computing deals with assigning computational tasks on
 dynamic resource pool of virtual machines online according to
Fig. 2. Flow diagram of the behavioral control structure for Honey Bee Behavior
inspired Load Balancing of Tasks in Cloud Computing inspired by foraging behavior
of real honey bees adapted from Johnson and Nieh [25] with minor changes.

different requirements from user or the system [15]. The service
requests from the clients for diverse applications can be routed
at any data center to any end server in the cloud. The routing of
service requests to the diverse servers is based on cloud manage-
ment policies depending on load of individual servers, closeness
to databases etc. The two frequently used scheduling principles
in a non pre-emptive system are the First-in-First-out (FIFO) and
Weighted Round Robin (WRR) policies. These policies may end up
with different degrees of loads on each and every VM. This may
lead to load difference between VMs computing in parallel. This
creates additional problems of reduction in response time, wastage
of resources and so on.

These kinds of situations leads us to give more importance to
the dynamic load balancing techniques which solves the problem
of load imbalance between VMs. Load Balancing techniques are
effective in reducing the makespan and response time.

Makespan can be defined as the overall task completion time.
We denote completion time of task Ti on VMj as CTij. Hence, the
makespan is defined as the following function [17]:

Makespan = max{CTij|i ∈ T, i = 1, 2, . . . n and j ∈ VM,

j = 1, 2, . . . m} (1)

Response time is the amount of time taken between submission of
a request and the first response that is produced. The reduction in
waiting time is helpful in improving responsiveness of the VMs.

4.1. Mathematical Model

Let VM = {VM1,VM2, . . . VMm} be the set of m virtual machines
which should process n tasks represented by the set T = {T1, T2,

. . ., Tn}. All the machines are unrelated and parallel and are denoted
as R in the model. We schedule non-preemptive independent tasks
to these VMs. Non-preemptive tasks are denoted as npmtn. Non-
preemption of a task means that processing of that task on a virtual

2 Applie

m
o

t
R

d

P

i∑
⇒
A
o
P
c
b

C

O
w
o
s
t

U
o
i
o
m
w
o

o
s
l

4
C

w
p
a

4

C

S

4

L

L
s

296 Dhinesh Babu L.D., P. Venkata Krishna /

achine cannot be interrupted (assuming that failure does not
ccur).

We denote finishing time of a task Ti by CTi. Our aim is to reduce
he makespan which can be denoted as CTmax. So our model is
|npmtn|CTmax.

Processing time of a task Ti on virtual machine VMj can be
enoted as Pij.

Processing time of all tasks in a VMj can be defined by Eq. (2).

j =
n∑

i=1

Pij j = 1, . . . , m (2)

By minimizing CTmax, we get Eq. (3). From Eq. (2) and (3) we can
mply Eq. (4).

i=1

Pij ≤ CTmax j = 1, . . . , m (3)

 Pj ≤ CTmax j = 1, . . . , m (4)

t the time of load balancing, the tasks will be transferred from
ne VM to other in order to reduce CTmax as well as response time.
rocessing time of a task varies from one VM to other based on VM’s
apacity. In case of transferring, completion time of a task may vary
ecause of load balancing.Optimally,

Tmax =
{

maxn
i=1CTi, maxn

j=1

n∑
i=1

Pij

}
(5)

ur load balancing technique, HBB-LB is a dynamic technique
hich not only balances the load but also considers the priorities

f tasks in the waiting queues of VMs. Our algorithm is an exten-
ion of existing dynamic load balancing techniques merged with
he concept of honey bee behavior.

The tasks removed from overloaded VMs act as Honey Bees.
pon submission to the under loaded VM, it will update the number
f various priority tasks and load of tasks assigned to that VM. This
nformation will be helpful for other tasks i.e., whenever a high pri-
rity has to be submitted to VMs, it should consider the VM that has
inimum number of high priority tasks so that the particular task
ill be executed earlier. Since all VMs are sorted in an ascending

rder, the task removed will be submitted to under loaded VMs.
Current workload of all available VMs can be calculated based

n the information received from the datacenter. Based on this,
tandard deviation has to be calculated to measure deviations of
oad on VMs.

.1.1. Capacity of a VM

j = penumj × pemipsj + vmbwj (6)

here processing element, penumj is the number processors in VMj,
emipsj is million instructions per second of all processors in VMj
nd vmbwj is the communication bandwidth ability of VMj.

.1.2. Capacity of all VMs

 =
m∑

i=1

Ci (7)

ummation of capacity of all VMs is the capacity of data center.

.1.3. Load on a VM
Total length of tasks that are assigned to a VM is called load.

V,Mi,t = N(T, t)
S(VMi,t)

(8)

oad of a VM can be calculated as the Number of tasks at time t on
ervice queue of VMi divided by the service rate of VMi at time t.
d Soft Computing 13 (2013) 2292–2303

Load of all VMs in a data center is calculated as

L =
m∑

i=1

LVMi
(9)

Processing time of a VM:

PTi = LVMi

Ci
(10)

Processing time of all VMs:

PT = L

C
(11)

Standard deviation of load:

� =

√√√√ 1
m

m∑
i=1

(PTi − PT)2 (12)

4.1.3.1. Load balancing decision. After finding the workload and
standard deviation, the system should decide whether to do load
balancing or not. For this, there are two possible situations i.e., (1)
Finding whether the system is balanced (2) Finding whether the
whole system is saturated or not (The whole group is overloaded
or not). If overloaded, load balancing is meaningless.

1. Finding State of the VM group
If the standard deviation of the VM load (�) is under or equal

to the threshold condition set (Ts) [0–1] then the system is bal-
anced [13]. Otherwise system is in an imbalance state. It may be
overloaded or under loaded.

If � ≤ Ts
System is balanced
Exit

2. Finding Overloaded Group
When the current workload of VM group exceeds the maxi-

mum capacity of the group, then the group is overloaded. Load
balancing is not possible in this case.

If L > maximum capacity
Load balancing is not possible

Else
Trigger load balancing.

4.1.3.2. VM grouping. The virtual machines will be grouped based
on their loads. The groups are Overloaded VMs, under loaded VMs
and balanced VMs. Each set contains the number of VMs. Task
removed from one of overloaded VM set has to a make decision
to get placed in one of several low loaded VMs based on the load
and tasks available in the under loaded VM. In our technique, this
task is considered as a honey bee and low loaded VMs are consid-
ered as the destination of the honey bees. The information the bees
(tasks) update are load on a VM, load on all VMs, number of tasks in
each VM, the number of VMs in each VM group (under loaded VM,
over loaded VM, etc.,) and task priorities in each VM. Load balanced
VMs are not used in switching of tasks. Once the task switching is
over, the balanced VMs are included into the load balanced VM set.
Once this set has all the VMs, the load balancing is successful i.e.,
all tasks are balanced.

4.1.3.3. Task transfer. If the decision is to balance the load, the
scheduler should trigger the load balancing aspect. In order to per-
form load balancing, we have to find overloaded VMs, demand (load
requirement), low-loaded VMs and supply (available load). After
this, remove the tasks from overloaded VMs. In order to find the

best VM to queue the removed task, we have to find the task prior-
ity. Tasks which are removed earlier (Scout bee) from over loaded
VMs are helpful in finding the correct low loaded VM for current
task (Forager bee). This Forager bee then becomes Scout bee for

Applie

n
s

4

T

T

Dhinesh Babu L.D., P. Venkata Krishna /

ext task. This process continues until the load balancing task is
uccessful. VM selection is done as follows:

.1.3.4. VM Selection of different prioritized tasks.

→ VM | min
(∑

T
)

∈ VM (13)

h d h d

m → VMd| min
(∑

Th +
∑

Tm

)
∈ VMd (14)

4.1.3.5. Algorithm HBB-LB. Workload information about each VMs
in set VM.

Here we define three sets based on load of the VMs. They are

LVM (Low loaded VM)—The set contains the VMs of load loaded.
OVM(Overloaded VM)—The set contains all overloaded VMs
BVM(Balanced VM)—Remaining all VMs are balanced and they
are available in this set.
d Soft Computing 13 (2013) 2292–2303 2297

Tl → VMd| min
(∑

T
)

∈ VMd (15)

where Th, Tm, Tl are the tasks of high, middle and low priority cadres
respectively.

The priorities of tasks can be categorized in 3 cadres (high, mid-
dle, and low). When a high priority task has to be submitted to one
of the under loaded machines, it has to consider the high priority
tasks already submitted to that machine. This will ensure that the
high priority task will find the machine which has less number of
high priority tasks.

2298 Dhinesh Babu L.D., P. Venkata Krishna / Applie

Table 1
Makespan in seconds before load balancing and after load balancing with HBB-LB.

No. of tasks Before load balancing (s) After load balancing (s)

10 11.4 5.7

5

n

20 27.5 15.5
30 36 19.6
40 57 28
. Experimental results

A cloud computing system has to handle several hurdles like
etwork flow, load balancing on virtual machines, federation of

Fig. 3. Comparison of makespan before an

Fig. 4. Response time of VMs in second

Fig. 5. Comparison of makespan for HBB-
d Soft Computing 13 (2013) 2292–2303

clouds, scalability and trust management and so on. Research in
cloud computing generally focus on these issues with varying
importance. Clouds offer a set of services (software and hardware)
on an unprecedented scale. Cloud Services have to handle the
temporal variation in demand through dynamic provisioning or de-
provisioning from clouds. Considering all these, we cannot directly
use the cloud computing system. Experimenting new techniques
or strategies in real cloud computing operations is not practically

possible as such experiments will compromise the end users QoS
requirements like security, cost, speed. Chang et al. discuss about
fast access security in Ubuntu clouds [40]. There is a need for a
good simulator for experimental purposes. One such a simulator

d after load balancing using HBB-LB.

s for HBB-LB, DLB, FIFO and WRR.

LB, FIFO, WRR and DLB algorithms.

Applie

i
f
i
[

r
h
a

Dhinesh Babu L.D., P. Venkata Krishna /

s CloudSim [20–22]. This simulator is a generalized simulation
ramework that allows modeling, simulation and experiment-
ng the cloud computing infrastructure and application services
20].

In this section, we have analyzed the performance of our algo-

ithm based on the results of simulation done using CloudSim. We
ave extended the classes of CloudSim simulator to simulate our
lgorithm. In the following illustrations, we have compared the

Fig. 6. Degree of imbalance between VMs befo

Fig. 7. Comparison between algorithms (HBB-LB, FCF

Fig. 8. Comparison of number of task m
d Soft Computing 13 (2013) 2292–2303 2299

makespan of Weighted Round Robin(WRR), FIFO, Dynamic Load
Balancing (DLB) [1,4] and our algorithm(HBB-LB) in different low
and over loaded ratios.

Table 1 illustrates the makespan before load balancing and after

load balancing with HBB-LB.

Fig. 3 illustrates the comparison of Makespan before and after
Load balancing using HBB-LB. The X-axis represents the number
of tasks and the Y-axis represents the Makespan (task execution

re and after load balancing with HBB-LB.

S, WRR and DLB) based on degree of imbalance.

igrations when there are 3 VMs.

2 Applie

a
u
m
d
b
f
n

300 Dhinesh Babu L.D., P. Venkata Krishna /

nd completion time) in seconds. With dynamic load balancing
sing honey bee behavior inspired load balancing (HBB-LB), the
akespan is reduced considerably. With more number of tasks, the

ifference in makespan time is quite high and HBB-LB provides the

est results. Fig. 4 illustrates the response time of VMs in seconds
or HBB-LB, DLB, FIFO and WRR Algorithms. The X-axis represents
umber of tasks and the Y-axis represents time in seconds. It is

Fig. 9. Comparison of number of task m

Fig. 10. Comparison of number of task m

Fig. 11. Comparison of number of task m
d Soft Computing 13 (2013) 2292–2303

evident that HBB-LB is more efficient compared with other three
methods.

Fig. 5 shows the comparison of Makespan for HBB-LB, FIFO and
WRR, DLB. The X-axis shows the number of tasks and the Y-axis

shows makespan in seconds. It is clearly evident from the graph
that HBB-LB is more efficient when compared with other 3 algo-
rithms. We used around 500 tasks for our comparisons. We have

igrations when there are 4 VMs.

igrations when there are 5 VMs.

igrations when there are 6 VMs.

Applie

a
f

6

D

w
a
r

a
o
c

F
m
v

Dhinesh Babu L.D., P. Venkata Krishna /

lso compared the degree of imbalance [18] in load between VMs
or all 4 algorithms.

. Degree of imbalance

I = Tmax − Tmin

Tavg
(16)

here Tmax and Tmin are the maximum and minimum Ti among
ll VMs, Tavg is the average Ti of VMs. Our load balancing system
educes the degree of imbalance drastically.

Fig. 6 shows the degree of imbalance between VMs before and
fter load balancing with HBB-LB. The X-axis represents number
f tasks and the Y-axis represents the degree of imbalance. It is
learly evident that after load balancing with HBB-LB, the degree of

Fig. 12. Comparison of number of task m

ig. 13. (a) Comparison of number of task migrations vs. number of virtual machines for a
achines for a set of 20 tasks. (c) Comparison of number of task migrations vs. number of

s. number of virtual machines for a set of 40 tasks.
d Soft Computing 13 (2013) 2292–2303 2301

imbalance is greatly reduced. Fig. 7 shows the comparison of degree
of imbalance between HBB-LB, FIFO, DLB and WRR Algorithms.
The X-axis represents number of tasks and the Y-axis represents
the degree of imbalance. HBB-LB is more efficient and has a lesser
degree of imbalance when compared with other three algorithms.

We have also compared the task migration balancing between
VMs finally. Task migration is number of tasks reassigned between
VMs. All these results show that our algorithm performs better than
the DLB and HDLB algorithms.

Figs. 8–12 shows task migration when numbers of VMs are var-
ied from 3 to 7 for HBB-LB, DLB and HDLB techniques. In all the

five cases it is clearly evident that the task migration is very less
compared with other two popular techniques irrespective of the
number of VMs. Fig. 13(a)–(d) shows the comparison of task migra-
tion vs. number of virtual machines when number of tasks are

igrations when there are 7 VMs.

 set of 10 tasks. (b) Comparison of number of task migrations vs. number of virtual
 virtual machines for a set of 30 tasks. (d) Comparison of number of task migrations

2 Applie

v
c
D

7

c
f
a
r
f
t
o
t
f
o
c
R
a
h
p
k
a
w
a

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

302 Dhinesh Babu L.D., P. Venkata Krishna /

aried from 10 to 40. Results illustrate that HBB-LB is more effi-
ient with lesser number of task migrations when compared with
LB and HDLB techniques.

. Conclusion

In this paper, we have proposed a load balancing technique for
loud computing environments based on behavior of honey bee
oraging strategy. This algorithm not only balances the load, but
lso takes into consideration the priorities of tasks that have been
emoved from heavily loaded Virtual Machines. The tasks removed
rom these VMs are treated as honey bees, which are the informa-
ion updaters globally. This algorithm also considers the priorities
f the tasks. Honey bee behavior inspired load balancing improves
he overall throughput of processing and priority based balancing
ocuses on reducing the amount of time a task has to wait on a queue
f the VM. Thus, it reduces the response of time of VMs. We have
ompared our proposed algorithm with other existing techniques.
esults show that our algorithm stands good without increasing
dditional overheads. This load balancing technique works well for
eterogeneous cloud computing systems and is for balancing non-
reemptive independent tasks. In future, we plan to extend this
ind of load balancing for workflows with dependent tasks. This
lgorithm considers priority as the main QoS parameter. In future,
e plan to improve this algorithm by considering other QoS factors

lso.

eferences

[1] B. Yagoubi, Y. Slimani, Task load balancing strategy for grid computing, Journal
of Computer Science 3 (3) (2007) 186–194.

[2] A. Revar, M. Andhariya, D. Sutariya, M. Bhavsar, Load balancing in grid envi-
ronment using machine learning-innovative approach, International Journal
of Computer Applications 8 (10 (Oct)) (2010) 975–8887.

[3] M. Randles, A. Taleb-Bendiab, D. Lamb, Scalable self governance using service
communities as ambients, in: Proceedings of the IEEE Workshop on Software
and Services Maintenance and Management (SSMM 2009) within the 4th IEEE
Congress on Services, IEEE SERVICES-I 2009, July 6–10, Los Angeles, CA (to
appear), 2009.

[4] B. Yagoubi, Y. Slimani, Dynamic load balancing strategy for grid comput-
ing, transactions on engineering, Computing and Technology 13 (May) (2006)
260–265.

[5] B. Yagoubi, M. Medebber, A load balancing model for grid environment,
computer and information sciences, 2007. iscis 2007, in: 22nd International
Symposium on, 7–9 Nov, 2007, pp. 1–7.

[6] Y. Hu, R. Blake, D. Emerson, An optimal migration algorithm for dynamic load
balancing, Concurrency: Practice and Experience 10 (1998) 467–483.

[7] M. Moradi, M.A. Dezfuli, M.H. Safavi, Department of Computer and IT, Engineer-
ing, Amirkabir University of Technology, Tehran, Iran, A New Time Optimizing
Probabilistic Load Balancing Algorithm in Grid Computing IEEE 978-1-4244-
6349-7/10/©2010.

[8] M. Randles, D. Lamb, A. Taleb-Bendiab, A comparative study into distributed
load balancing algorithms for cloud computing, in: Proceedings of 24th IEEE
International Conference on Advanced Information Networking and Applica-
tions Workshops, Perth, Australia, April, 2010, pp. 551–556.

[9] M. Houle, A. Symnovis, D. Wood, Dimension-exchange algorithms for load bal-
ancing on trees, in: Proc. of 9th Int. Colloquium on Structural Information and
Communication Complexity, Andros, Greece, June, 2002, pp. 181–196.

10] D.L. Eager, E.D. Lazowska, J. Zahorjan, Adaptive load sharing in homogeneous
distributed systems, The IEEE Transactions on Software Engineering 12 (5)
(1986) 662–675.

11] H.D. Karatza, Job scheduling in heterogeneous distributed systems, Journal of
Systems and Software 56 (1994) 203–212.

12] S. Genaud, A. Giersch, F. Vivien, Load balancing scatter operations for grid
computing, in: Proceedings of the 12th Heterogeneous Computing Workshop
(HCW’2003), Nice, France, April, 2003, pp. 101–110.

13] R.F. de Mello, L.J. Senger, L.T. Yang, A routing load balancing policy for grid
computing environments, in: 20th International Conference on, vol. 1, 18–20
April, Advanced Information Networking and Applications, 2006. AINA 2006.
(2006) 6.

14] B. Yagoubi, Distributed load balancing model for grid computing, in: African
Conference on Research in Computer Science and Applied mathematics,

October, 2008, pp. 631–638.
15] C. Zhao, S. Zhang, Q. Liu, J. Xie, J. Hu, Independent tasks scheduling based on

genetic algorithm in cloud computing, wireless communications. networking
and mobile computing, 2009. WiCom ‘09, in: 5th International Conference on,
24–26 Sept, 2009, pp. 1–4.

[

d Soft Computing 13 (2013) 2292–2303

16] N. Malarvizhi, V. Rhymend Uthariaraj, Hierarchical load balancing scheme for
computational intensive jobs in Grid computing environment, in: Advanced
Computing, 2009. ICAC 2009. First International Conference on, 13–15 Dec,
2009, pp. 97–104.

17] P. Brucker, Scheduling Algorithms, 2nd ed., Springer-Verlag, Berlin, Heidelberg,
Germany, 1997.

18] K. Li, G. Xu, G. Zhao, Y. Dong, D. Wang, Cloud task scheduling based on load
balancing ant colony optimization, in: Chinagrid Conference (ChinaGrid), 2011
Sixth Annual, 22–23 Aug, 2011, pp. 3–9.

19] S. Nakrani, C. Tovey, On Honey Bees and Dynamic Server Allocation in Inter-
net Hosting Centers, Adaptive Behavior - Animals, Animats, Software Agents,
Robots, Adaptive Systems 12 (3–4 (Sep–Dec)) (2004) 223–240.

20] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, R. Buyya, CloudSim:
a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Software: Practice and Experi-
ence 41 (2011) 23–50, http://dx.doi.org/10.1002/spe.995.

21] R.N. Calheiros, R. Ranjan, C.A.F.D. Rose, R. Buyya, CloudSim: a novel framework
for modeling and simulation of cloud computing infrastructures and services,
Computing Research Repository, vol. abs/0903.2525, 2009.

22] R. Buyya, R. Ranjan, R.N. Calheiros, Modeling simulation of scalable cloud com-
puting environments and the cloudsim toolkit: challenges and opportunities,
in: Proceedings of the 7th High Performance Computing and Simulation Con-
ference (HPCS 2009, ISBN: 978-1-4244-4907-1, IEEE Press, New York, USA),
Leipzig, Germany, June 21–24, 2009.

23] K. Mukherjee, G. Sahoo, Mathematical model of cloud computing framework
using fuzzy bee colony optimization technique, in: Proceedings of the 2009
International Conference on Advances in Computing, Control, and Telecom-
munication Technologies, December 28–29, 2009, pp. 664–668.

24] B.R. Johnson, J.C. Nieh, Modeling the adaptive role of negative signaling in honey
bee intraspecific competition, Journal of Insect Behavior 23 (2010) 459–471.

25] H. de Vries, J.C. Biesmeijer, Modelling collective foraging by means of individual
behaviour rules in honey-bees, Behavioral Ecology and Sociobiology 44 (1998)
109–124.

26] D. Karaboga, An idea based on honey bee swarm for numerical optimization,
Technical Report TR06, Computer Engineering Department, Erciyes University,
Turkey, 2005.

27] R.S. Rao, S.V.L. Narasimham, M. Ramalingaraju, Optimization of distribution
network configuration for loss reduction using artificial bee colony algorithm,
International Journal of Electrical Power and Energy Systems Engineering 1
(2008) 116–122.

28] N. Karaboga, M.B.C. etinkaya, A novel and efficient algorithm for adaptive fil-
tering: artificial bee colony algorithm, Turkish Journal of Electrical Engineering
& Computer Sciences Vol. 19 (2011) 175–190.

29] A. Singh, An artificial bee colony algorithm for the leaf constrained mini-
mum spanning tree problem, Applied Soft Computing Journal 9 (2) (2009)
625–631.

30] Q.K. Pan, M.F. Tasgetiren, P. Suganthan, T. Chua, A discrete artificial bee colony
algorithm for the lot-streaming flow shop scheduling problem, Information
Sciences 181 (12) (2011) 2455–2468.

31] F. Kang, J. Li, Q. Xu, Structural inverse analysis by hybrid simplex arti-
ficial bee colony algorithms, Computers and Structures 87 (13) (2009)
861–870.

32] D.T. Pham, E. Kog, A. Ghanbarzadeh, S. Otri, S. Rahim, M. Zaidi, The bees
algorithm—a novel. Tool for complex optimisation problems, in: IPROMS
2006 Proceeding 2nd InternationalVirtual Conference on Intelligent Production
Machines and Systems, Oxford, Elsevier, 2006.

33] T.D. Seeley, The Wisdom of the Hive, Harvard University Press, Cambridge, MA,
1995.

34] T.D. Seeley, Honey bee foragers as sensory units of their colonies, Behavioral
Ecology and Sociobiology 34 (1994) 51–62.

35] J.-L. Deneubourg, S. Goss, R. Beckers, G. Sandini, A. Babloyantz, Self-
Organization, Emergent Properties, and Learning, Plenum Press, New York,
1991, p. 267.

36] B.B. Werger, M.J. Mataríc, From animals to animats 4, in: P. Maes, M. Mataríc,
J.-A. Meyer, J. Pollack, S.W. Wilson (Eds.), Fourth Intern. Conf. on Simulation of
Adaptive Behavior, MIT Press, Bradford Books, 1996, p. 625.

37] A.M. Bernardino, E.M. Bernardino, J.M. Sánchez-Pérez, M.A. Vega-Rodríguez,
J.A. Gómez-Pulido, Efficient Load Balancing Using the Bees Algorithm, Trends
in Applied Intelligent Systems, Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2011.

38] D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC) algo-
rithm, Applied Soft Computing 8 (1) (2008) 687–697.

39] E. Cuevas, D. Zaldívar, M. Pérez-Cisneros, H. Sossa, V. Osuna, Block matching
algorithm for motion estimation based on Artificial Bee Colony (ABC), Applied
Soft Computing (2012), http://dx.doi.org/10.1016/j.asoc.2012.09.020.

40] B. Chang, H. Tsai, C.F. Huang, Z.Y. Lin, C.M. Chen, Fast access security on cloud
computing: ubuntu enterprise server and cloud with face and fingerprint iden-
tification, in: Proceedings of the 2011 2nd International Congress on Computer
Applications and Computational Science, Springer, Berlin, Heidelberg, 2012, pp.
451–457.

41] P.-W. Tsai, M.K. Khan, J.-S. Pan, B.-Y. Liao, Interactive artificial bee colony sup-

ported passive continuous authentication system, Systems Journal, IEEE, vol.
PP, no.99, pp.1, 0. http://dx.doi.org/10.1109/JSYST.2012.2208153

42] P.W. TSai, J.S. Pan, B.Y. Liao, S.C. Chu, Enhanced artificial bee colony optimiza-
tion, International Journal of Innovative Computing, Information and Control
5 (12) (2009) 5081–5092.

dx.doi.org/10.1002/spe.995
dx.doi.org/10.1016/j.asoc.2012.09.020
http://dx.doi.org/10.1109/JSYST.2012.2208153

Applie

Regional Engineering College, Calicut, India, and the Ph.D.
degree from VIT University, Vellore, India. He is currently
Dhinesh Babu L.D., P. Venkata Krishna /

Dhinesh Babu L.D. received B.E in Electrical and Elec-
tronics Engineering and M.E degree in Computer Science
and Engineering from the University of Madras in 1998
and 2001, respectively. He is working toward his PhD
at VIT University. He is currently a faculty in Software
Engineering Division of the School of Information Tech-

nology and Engineering at VIT University, Vellore, India.
He has served as Division Leader of Software Engineering
Division. His research interests include Cloud Computing,
Grid and Distributed Computing, Computer and Software
Security, Software Engineering, ERP, Business Information
Systems and Supply chain Management.
d Soft Computing 13 (2013) 2292–2303 2303

P. Venkata Krishna received the B.Tech. degree in
electronics and communication engineering from Sri
Venkateswara University, Tirupathi, India, the M.Tech.
degree in computer science and engineering from the
a Professor in the School of Computing Sciences, VIT Uni-
versity. His research interests include mobile, wireless
systems, grid computing and cloud computing.

	Honey bee behavior inspired load balancing of tasks in cloud computing environments
	1 Introduction
	2 Related works
	3 Honey bee foraging behavior
	4 Honey bee behavior inspired load balancing (HBB-LB) algorithm
	4.1 Mathematical Model
	4.1.1 Capacity of a VM
	4.1.2 Capacity of all VMs
	4.1.3 Load on a VM
	4.1.3.1 Load balancing decision
	4.1.3.2 VM grouping
	4.1.3.3 Task transfer
	4.1.3.4 VM Selection of different prioritized tasks
	4.1.3.5 Algorithm HBB-LB

	5 Experimental results
	6 Degree of imbalance
	7 Conclusion
	References

